ADDITIONAL COURSES OF INTEREST

This list includes other courses related to Global Change that might be of interest to IGC students, but that are not needed to satisfy the policy or conservation requirements of the program. Course descriptions follow.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>APSC 5044</td>
<td>Biotechnology in Agriculture and Society (PPWS 5024)</td>
<td>EA Wong</td>
<td>CALS</td>
</tr>
<tr>
<td>BIOL 5024</td>
<td>Population and Community Ecology (Lisa Belden)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 5114G</td>
<td>Advanced Global Change Ecology (Jeb Barrett)</td>
<td></td>
<td>COS</td>
</tr>
<tr>
<td>BIOL 5564</td>
<td>Advanced Infectious Disease Ecology</td>
<td></td>
<td>COS</td>
</tr>
<tr>
<td>BSE 5124</td>
<td>Advanced Topics in Watershed Management (Krometis)</td>
<td></td>
<td>COE</td>
</tr>
<tr>
<td>CEE 5194</td>
<td>Environmental Engineering Microbiology (Pruden)</td>
<td></td>
<td>COE</td>
</tr>
<tr>
<td>CEE 6104</td>
<td>Advanced Environmental Chemistry (Edwards)</td>
<td></td>
<td>COE</td>
</tr>
<tr>
<td>CEE 5124</td>
<td>Fundamentals in Environmental Toxicology</td>
<td></td>
<td>COE</td>
</tr>
<tr>
<td>CEE 5184</td>
<td>Techniques for Environmental Analysis</td>
<td></td>
<td>COE</td>
</tr>
<tr>
<td>CSES 4595</td>
<td>Soil and Groundwater Pollution</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>CSES 5674</td>
<td>Atmospheric Pollution</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>CSES 5764G</td>
<td>Advanced Bioremediation</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>CSES 5774</td>
<td>Advanced Rehabilitation of Disturbed Lands</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>CSES 5854</td>
<td>Advanced Wetland Soils</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>CSES 5864</td>
<td>Advanced Wetland Soils and Mitigation</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>CSES 5874</td>
<td>Reclamation of Disturbed Lands</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>ENT 5264</td>
<td>Biological Control of Arthropod Pests and Weeds (Salom)</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>ENT 5624</td>
<td>Animal and Plant Biosafety and Biosecurity</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>ENT 6164</td>
<td>Insecticide Toxicology</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>FOR 5984</td>
<td>Ecosystems and Climate (Quinn Thomas)</td>
<td></td>
<td>CNRE</td>
</tr>
<tr>
<td>FOR 5984</td>
<td>Quantitative Analysis of Social Science Data for Natural Resources (Mike Sorice)</td>
<td></td>
<td>CNRE</td>
</tr>
<tr>
<td>FST 5634G</td>
<td>Advanced Epidemiology Food & Water Diseases</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>GEOG 5214</td>
<td>Health and the Global Environment</td>
<td></td>
<td>CNRE</td>
</tr>
<tr>
<td>PHS 5304</td>
<td>Zoonoses and Infectious Diseases Common to Humans and Animals</td>
<td></td>
<td>VMRCVM</td>
</tr>
<tr>
<td>PPWS 5204</td>
<td>Principles of Plant Disease Management</td>
<td></td>
<td>CALS</td>
</tr>
<tr>
<td>PPWS 5604G</td>
<td>Advanced Biological Invasions (Jacob Barney)</td>
<td></td>
<td>CALS</td>
</tr>
</tbody>
</table>
Global Change Science Course Descriptions

APSC 5044 (PPWS 5044) - Biotechnology in Agriculture and Society
Worldwide impact of biotechnology applied to plants, animals, and microorganisms. Concepts, scientific and ethical issues, and public concerns related to genetic engineering. Safety and release of genetically engineered organisms; bioremediation; cloning; transgenic plants, animals, and microbes. Graduate standing required. Two semesters each of biology and chemistry.
- Credit Hour(s): 3
- Lecture Hour(s): 3
- Level: Graduate
- Instruction Type(s): Lecture, Online Lecture

BIOL 5024 - Population and Community Ecology
Population dynamics, interspecific interactions, succession, and diversity of plants and animals. Quantitative approaches emphasized. Ecology course required. II
- Credit Hour(s): 0 OR 4
- Lecture Hour(s): 0 OR 3
- Level: Graduate
- Instruction Type(s): Lab, Lecture; Lisa Belden

BIOL 5114G - Advanced Global Change Ecology
Human alterations of climate, landscapes and biogeochemical cycling influence ecological structure and functioning at the global scale. Such changes have the potential to disrupt natural and managed ecosystems with potentially significant biological and economic impacts. This course will examine the influences of these global changes on the ecosystem processes and biodiversity, drawing on paleo- and contemporary examples. Current and future potential feedbacks between biological systems and the global environment will also be addressed.
- When: Even year, fall
- Pre-requisite: Graduate Standing required
- Credit Hour(s): 4
- Lecture Hour(s): 4
- Level: Graduate

BIOL 5564 - Advanced Infectious Disease Ecology
Advanced overview of the principles of infectious disease dynamics from ecological and evolutionary perspectives. Examines a variety of wildlife hosts and disease-causing agents. Selective coverage of specific host and pathogen models to illustrate underlying principles of wildlife disease emergence, maintenance, and spread, as well as connections between wildlife and human health. Pre-requisite: Graduate Standing required.
- Credit Hour(s): 3
- Lecture Hour(s): 3
- Level: Graduate
- Instruction Type(s): Lecture

BIOL 5084 Groundwater Ecology? Still offered? Not in catalog now

BSE 5124: Advanced Topics in Watershed Management
An interdisciplinary exploration of advanced topics in watershed management. Reading, discussion, summary and presentation of current research in the areas of water quality and watershed management. Topics will be built around a semester theme that will vary by semester. Graduate standing required.
- Instructor: Krometis
- Credit Hour(s): 2
- Lecture Hour(s): 2
- Level: Graduate
- Instruction Type(s): Lab, Lecture
CEE 5194 - Environmental Engineering Microbiology
Roles of microorganisms in wastewater treatment, anaerobic digestion of municipal sludges, stream self-purification, and degradation of water quality in drinking-water systems. Disinfection of wastewater and drinking water to remove viruses, bacteria, and protozoa that cause waterborne disease.
Instructor: Pruden
Credit Hour(s): 0 OR 3 Lecture Hour(s): 0 OR 2 Level: Graduate
Instruction Type(s): Lab, Lecture

CEE 6104 - Advanced Environmental Chemistry
Advanced theories and practices in environmental engineering with special emphasis on inorganic aspects of water chemistry; application of water chemistry fundamentals for the description of aquatic systems. II
Credit Hour(s): 2 Lecture Hour(s): 2 Level: Graduate
Instruction Type(s): Lecture
Prerequisite(s): (CEE 5104 (UG) OR CHEM 3616 (UG)) OR (CEE 5104 OR CHEM 3616)

CEE 5124 - Fundamentals of Environmental Toxicology
Introduction to nomenclature, principles, and scope of environmental toxicology. The fate and effects of both organic and inorganic toxicants in the environment, in animals, and in various test systems. II
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate Instruction Type(s): Lecture
Prerequisite(s): CEE 5104 (UG) OR CEE 5104

CEE 5184 - Techniques for Environmental Analysis
An introductory course on techniques commonly utilized for analysis of environmental samples. Course will discuss gas and liquid chromatography, mass spectrometry, and atomic absorption spectroscopy, focusing on analysis of complex environmental samples. Practical techniques and applications are emphasized, but sufficient theory is introduced to provide students with an understanding of the principles involved.
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate
Instruction Type(s): Lecture
Prerequisite(s):

CSES 5674 - Atmospheric Pollution
Analysis of practical problems related to pollution of the earth's atmosphere. Atmospheric structure, applications of the ideal gas law, ambient air quality standards, odor and visibility, pollutant scavenging processes, physical mechanisms controlling global winds, vertical mixing, and atmospheric stability. Gaussian plume models for pollutant dispersion in the atmosphere. Pre: Graduate standing.
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate

CSES 5764G - Advanced Bioremediation
Environmental biotechnology and use of microbes and other organisms to remove contaminants and improve environmental quality. Treatment of contaminated soils, waters, and wastewaters; remediation of industrial waste streams. Current topics and future directions in biodegradation research. Pre: Graduate standing.
CSES 5774 - Advanced Rehabilitation of Disturbed Lands
Advanced study of human disturbance of soils and landscapes and various remediation strategies. Global environmental impacts of coal and metal mining, mineral processing, highway-utility corridor development, and urbanization. Acid mine drainage and treatment, including use of artificial wetlands. Study tours and field project. May not be taken after CSES 4774 or CSES 5874. Graduate standing required.
Credit Hour(s): 0 OR 4 Lecture Hour(s): 0 OR 3 Level: Graduate
Instruction Type(s): Lab, Lecture
Prerequisite(s): CSES 4124 (UG) OR CSES 4124 OR CSES 4134 (UG) OR CSES 4134 OR MINE 4544 (UG) OR MINE 4544

CSES 5854 - Advanced Wetland Soils
Wetlands soils as components of natural landscapes: biogeochemistry, hydrology, geomorphology, hydric soil indicators, and wetland functions under various land uses. Soil and hydrologic factors important to wetland delineation and jurisdictional determination. Mitigation of wetland impacts with emphasis on restoration and creation. Outdoor lectures at local wetlands and a two-day long field trip to observe and identify wetland soils are mandatory. Pre: Graduate standing.
Credit Hour(s): 0 OR 4 Lecture Hour(s): 0 OR 3 Level: Graduate
Instruction Type(s): Lab, Lecture
Prerequisite(s): null

CSES 5864 - Advanced Wetland Soils and Mitigation
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate
Instruction Type(s): Lecture, Online Lecture
Prerequisite(s): CSES 5114 (UG) OR CSES 5114

CSES 5874 - Reclamation of Disturbed Lands
Human disturbances of soils and landscapes and various remediation strategies. Environmental impacts of coal and metal mining, mineral processing, highway or utility corridor development, and urbanization. Field and lab testing protocols; development of site-specific revegetation protocols. Acid mine drainage and treatment, including use of artificial wetlands.
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate
Instruction Type(s): Lecture, Online Lecture
Prerequisite(s): CSES 5114

ENT 5264 - Biological Control of Arthropod Pests and Weeds
Principles involved in the use of indigenous and introduced biological agents in the regulation of arthropod pests and weeds. Course objectives are to emphasize concepts important in biological control: population dynamics, host-parasite interactions, characteristics of parasitism and predation, principles involved in current biological approaches to pest control, and use of biological agents to control weeds. Suitable for students in entomology, plant protection, and related curricula. II
Instructor: Scott Salom
Credit Hour(s): 0 OR 3 **Lecture Hour(s):** 0 OR 2 **Level:** Graduate
Instruction Type(s): Lab, Lecture
Prerequisite(s):

ENT 5624/ PPWS 5624 - Animal and Plant Biosafety and Biosecurity
Principles, tools, and techniques of disease detection, early warning, and containment of animal and plant pathogens. Regulatory agencies and guidelines used to ensure the biosafety and biosecurity of the US food supply from accidental introductions and potential bioterrorism.
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate
Instruction Type(s): Lecture, Online Lecture
Prerequisite(s): ENT 5044

ENT 6164 - Insecticide Toxicology
This course is designed to teach advanced graduate students the chemistry, toxicity, mode of action, and pharmacology of insecticides and related compounds, and to give them an opportunity to learn the methods employed in studying these compounds. The course is designed for entomology and other life science majors. II
Credit Hour(s): 0 OR 3 Lecture Hour(s): 0 OR 2 Level: Graduate
Instruction Type(s): Lab, Lecture
Prerequisite(s): ENT 6154

FOR 5984 Ecosystems and Climate
This course explores the interactions between ecosystems and climate. Specific topics include biogeophysics (albedo, energy balance, hydrology), biogeochemistry (carbon and nitrogen cycling), ecology, climate change, micrometeorology, forest dynamics, and Earth System modeling. Class discussions will explore the current research in global environmental change and ecosystem dynamics. Computer exercises and projects will develop skills in modeling ecosystem-climate feedbacks. Lecture and laboratory will be combined into a course that flows between lectures, discussions, debates, modeling exercises, and group projects. (2H, 3L, 3C)
Instructor: Quinn Thomas; Fall semester
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate

FOR 5984 Quantitative Analysis of Social Science Data for Natural Resources
Graduate-level course in applied social statistics with the objective to familiarize students with analytical procedures commonly used in the natural resources field. Attention focuses on the understanding, selection, use, interpretation, and criticism of these methods.
Instructor: Mike Sorice
FST 5634G - Advanced Epidemiology Food & Water Diseases
Overview of causes, transmission, and epidemiology of major environmental, food, and waterborne diseases. Outbreak and sporadic detection, source tracking, and control of pathogens. Overview of the impact of food-borne outbreaks on regulatory activities at the national and international level. Pre-requisite: Graduate Standing required
Credit Hour(s): 4 Lecture Hour(s): 4 Level: Graduate
Instruction Type(s): Lecture
Prerequisite(s):

GEOG 5214 - Health and the Global Environment
Examination of human-environment relations in the context of health and disease using a global perspective. Investigation of dynamic interactions between humans and the total environment, including the physical, biological, cultural, political, and economic environments, in relation to disease. Analysis of geographic variations in health, disease, and health care delivery, including differences between developed and developing regions and within a variety of human and physical environments.
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate
Instruction Type(s): Lecture
Prerequisite(s):

PHS 5304: Zoonoses and Infectious Diseases Common to Humans and Animals
Epidemiology of bacterioses, mycoses, chlamydioses, rickettsioses, parasitoses, viroses and prion diseases that are transmissible between animals and humans and / or are acquired by animals and humans from the same source and that have great impact on public health. Cultural, social and economic factors and impacts; modes of inter- and intra-species transmission including roles of vectors and environmental factors; concepts of emergence and re-emergence; pathogenesis in various hosts and host adaptation; temporal and spatial dynamics, and risk factors for exposure, infection and expression of clinical disease; modes of detection, control / mitigation and prevention; biosecurity, including food safety and security. Instructor: Elvinger; 3 credits

PPWS 5604G – Advanced Biological Invasions; CALS
Causes, consequences, and epidemiology of invasive plants animals, and microbes. Conceptual, mechanistic, societal, and political components of invasive species from Darwin to modern day; invasion process from introduction to ecological or economic impact. Taxonomy, management, and risk assessment, within a policy context. Pre: Graduate standing. (2H, 3L, 3C)
Instructor: Jacob Barney
Credit Hour(s): 3 Lecture Hour(s): 2 Level: Graduate
Instruction Type(s): Lab, Lecture
Prerequisite(s):

PPWS 5204 - Principles of Plant Disease Management
Methods of plant disease management, and theories and effectiveness of their application. Discussion based on epidemiological principles. Methods include: cultural practices, resistance, chemical, and biological control. Laboratory 5214 supplements this course. Instructor: Jacob Barney
Credit Hour(s): 3 Lecture Hour(s): 3 Level: Graduate
Instruction Type(s): Lecture, Online Lecture
Prerequisite(s): PPWS 3104